140 research outputs found

    Exemplar-based Linear Discriminant Analysis for Robust Object Tracking

    Full text link
    Tracking-by-detection has become an attractive tracking technique, which treats tracking as a category detection problem. However, the task in tracking is to search for a specific object, rather than an object category as in detection. In this paper, we propose a novel tracking framework based on exemplar detector rather than category detector. The proposed tracker is an ensemble of exemplar-based linear discriminant analysis (ELDA) detectors. Each detector is quite specific and discriminative, because it is trained by a single object instance and massive negatives. To improve its adaptivity, we update both object and background models. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our tracking algorithm.Comment: ICIP201

    Fault Diagnosis of Rotating Equipment Bearing Based on EEMD and Improved Sparse Representation Algorithm

    Get PDF
    Aiming at the problem that the vibration signals of rolling bearings working in a harsh environment are mixed with many harmonic components and noise signals, while the traditional sparse representation algorithm takes a long time to calculate and has a limited accuracy, a bearing fault feature extraction method based on the ensemble empirical mode decomposition (EEMD) algorithm and improved sparse representation is proposed. Firstly, an improved orthogonal matching pursuit (adapOMP) algorithm is used to separate the harmonic components in the signal to obtain the filtered signal. The processed signal is decomposed by EEMD, and the signal with a kurtosis greater than three is reconstructed. Then, Hankel matrix transformation is carried out to construct the learning dictionary. The K-singular value decomposition (K-SVD) algorithm using the improved termination criterion makes the algorithm have a certain adaptability, and the reconstructed signal is constructed by processing the EEMD results. Through the comparative analysis of the three methods under strong noise, although the K-SVD algorithm can produce good results after being processed by the adapOMP algorithm, the effect of the algorithm is not obvious in the low-frequency range. The method proposed in this paper can effectively extract the impact component from the signal. This will have a positive effect on the extraction of rotating machinery impact features in complex noise environments

    Functionalized self-assembled monolayers on mesoporous silica nanoparticles with high surface coverage

    Get PDF
    This paper proposes three content-based image classification techniques based on fusing various low-level MPEG-7 visual descriptors. Fusion is necessary as descriptors would be otherwise incompatible and inappropriate to directly include e.g. in a Euclidean distance. Three approaches are described: A “merging” fusion combined with an SVM classifier, a back-propagation fusion combined with a KNN classifier and a Fuzzy-ART neurofuzzy network. In the latter case, fuzzy rules can be extracted in an effort to bridge the “semantic gap” between the low-level descriptors and the high-level semantics of an image. All networks were evaluated using content from the repository of the aceMedia project1 and more specifically in a beach/urban scene classification problem

    Functionalized self-assembled monolayers on mesoporous silica nanoparticles with high surface coverage

    Get PDF
    Mesoporous silica nanoparticles (MSNs) containing vinyl-, propyl-, isobutyl- and phenyl functionalized monolayers were reported. These functionalized MSNs were prepared via molecular self-assembly of organosilanes on the mesoporous supports. The relative surface coverage of the organic monolayers can reach up to 100% (about 5.06 silanes/nm(2)). These monolayer functionalize MSNs were analyzed by a number of techniques including transmission electron microscope, fourier transform infrared spectroscopy, X-ray diffraction pattern, cross-polarized Si(29) MAS NMR spectroscopy, and nitrogen sorption measurement. The main elements (i.e., the number of absorbed water, the reactivity of organosilanes, and the stereochemistry of organosilane) that greatly affected the surface coverage and the quality of the organic functionalized monolayers on MSNs were fully discussed. The results show that the proper amount of physically absorbed water, the use of high active trichlorosilanes, and the functional groups with less steric hindrance are essential to generate MSNs with high surface coverage of monolayers
    • 

    corecore